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Letj(z) = 2::=0 akzk be an entire function, and set M(r) = maxlzl<r Ij(z)l.
As usual,j(z) is of order p [2, p. 8] if

1
. log log M(r)
1m sup 1 = P

r->oo og r

j (z) is of type 7 and lower type w corresponding to the order p (0 < P < 00)
if

lim ~up log M(r) = 7

r->OO lnf r P w
(0 ~ w ~ 7 ~ (0). (1)

(2)

An entire functionj(z) is of perfectly regular growth (p, 7) [5, p. 45] if and
. only if there exist two (finite) positive constants p and 7 such that

lim log M(r) = T.

r~OO rP

For an entire functionJ- real and +0 on [0, 00), we set

Am.n = Am.n (fl ) = min max Irm.n(x) - j(l) I, (3)
'm.nE7Tm.n o~x<oo X

where

Pm(X) E7Tm ,

7Tm denote the class of all real polynomials of degree at most m. 7Tm •n denote
the class of all rational functions of the form rm.n(x).

It is known [5, p. 45] that if j(z) is of type T and lower type w,

o < w ~ 7 < 00, then

lim sup!!.. I an Ipln = 7,
n->oo pe

lim inf np I an Ipln,,?= w,
1'->00 pe "
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(4)

(5)
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for a sequence of numbers np satisfying the condition

where Xl is the largest and X2 the smallest root of the equation

X w
xlog-+ - = o.

e T

The following theorem relates lim sup (Ao.n)1/n to the growth off
n->OO

(6)

(7)

THEOREM A [3, Theorems 2 and 3]. Let fez) be an entire function of
perfectly regular growth (p, T) with nonnegative coefficients, then

(8)

In the same direction we have also the following more general result.

THEOREM B [4, Theorem 6]. Let fez) = L:~o aJcZk, with ao > 0 and
ak ? 0 for all k ? I, be an entire function of order p(O < P < 00), type T

and lower type w such that 0 < w ~ T < 00. Then

lim sup (Ao.n)l/n < 1.
n->oo

(9)

Whenever Theorem A can be applied, it gives a better upper bound than
Theorem B. But Theorem B is valid for a wider class of entire functions.

The aim of this note is to improve, under certain conditions, Theorems A
and B.

THEOREM C. If fez) = L:-o akzk, with ak ? 0 for all k ? 0, is an entire
function of order p(O < P < (0), type T, and lower type w, with T < 2w,
o< w ~ T < 00, then

(10)

where Xl and X 2 are as above.
Remarks. The right inequality (8) follows from (10), because T = w

implies that Xl = X 2 • In (10), if w is very close to T, then we have a better
bound than in (9) for this class of functions. Hence, this theorem is also
more general than Theorem B.
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ProofofTheorem C. The proof of this theorem is very similar to the proof
of Theorem A with one difference. In the proof of Theorem C we sue (4)
and (5) instead of (2.4) and (2.5) of [3]. Then, instead of(3.7) of [3] we arrive at

where

(11)

I 1 1 Ig = sup -----
" - 0<"'<00 s,,(x) j(x) ,

Now from the definition of g" it is clear that

'<In ): ii.

m ~ n ): n*. (12)

For any large n, choose an n:p so that 2n:p - 1 :::;; n < 2n:P+1 - 1. From (12),
we have

With the restriction T < 2w, it is clear from (11) that g~~(2~Cl) is less than
v

one for p sufficiently large. Now, replacing n in the exponent of the above
expression by 2n:P+1 - I gives

(13)

We know from (6) that

This inequality along with (11) and (13) gives

(14)

By noting that '\0." :::;; g" for all large n, (10) follows from (14).

THEOREM D. Let j(z) = :L:=o akzk, ak): 0 for k): 0, be an entire
function of order p(O < P < co), type T and lower type w with T < Ow for
some () < 2, and 0 < w « T < 00. Then

(15)

Remarks. For functions of perfectly regular growth, the left inequality (8)
follows from (15).
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Proofof Theorem D. The coefficients of fez) being ~O, we have from (2),
for all r ~ ro(€),

o~ x ~ r,
(16)

Now one has from (16)

o ~f(x) ~f(( 2~p tP) ~ en(!+<l/2
p

,

(
n )1/Po~ X ~ 2rp ,

(17)

Next, consider rt,n = l/Pn* from 7To•n which gives best approximation in the
sense of (3), that is

Ao•n = l11in max If(l ) - -+-()I·
P" En" X Pn X

From Theorem C it follows that

(18)

for all n ~ n(€). (19)

Indeed, if (19) is false, then

for a sequence of values of n.

Hence, € being arbitrary,

lim sup (\,n)1-n ~ e1/(l/(2p».
n->oo

But from Theorem C, we have

Equation (20) fails to be true if

We can make (21) valid by properly choosing rand w.
From (17) we have

(
n )1/P

f(x) < (Ao.n)-l, 0 ~ x ~ 2rp , n ~ max{no(€), n(€)} = ii.

(20)

(21)

(22)



n ?o; n.
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Equation (I8) gives, with a little calculation,

-rex) * rex)
I(x) + (Ao.n)-1 :;:;; Pn (x) - I(x) :;:;; (Ao.n)-1 - I(x) ,

(
n )11P

0:;:;; x:;:;; 2Tp ,

89

(23)

Because the right side of the above inequality is monotonic increasing with x,
we can write, from (I 7),

en (1+E) Ip
I Pn*(x) - l(x)1 :;:;; (A )-1 _ en(!+E)/2 '

o.n

Now let

(
n )1 1P

o :;:;; x:;:;; 2Tp , n?o; n. (24)

. I (n )11
PIEn == mf, sup I rn(x) - l(x)l, 0 :;:;; x:;:;; -2 .

'"Err" Tp

According to (24), we have

(25)

en (l+E)lp
En :;:;; (A ) 1 _ en(1+E) 12p ,

O.n
n ?o; n. (26)

To obtain a lower bound for En, we use a result of Bernstein (1, p. 10]
which gives for the interval [0, (n/2'Tp)1 /p ],

(
.!!-)In+UIP. jln+l)(O) = (.!!-)In+l)IP . an+1

En?o; 2Tp 22n+1(n + 1)! 2Tp 22n+l •

Now by (26) and (27) we have

(27)

n ?o; ii. (28)

From (5) we have, for a sequence of numbers nv ,

For this sequence nv , the left side of (28) is bounded below by
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Consequently, from (28) we have, for alliarg n = no ,

(29)

where

Now (29) holds true for all large np only if

(30)

If (30) is not true, then

for all n ~ no .

That is

Therefore,

for all large n.

(A )-1 _ en(+<l/20 < _1_
O.n rAo•n

Equation (31) gives, after a simple calculation,

for all large n. (31)

1· . f(\ )1/n 1
1m In 1\0 n > -1/(2) ,
n-+oo' e P

But according to Theorem C,

and

(32)

(33)

(21)

Hence (32) is false and (30) holds. From (30) we obtain with a little cal­
culation
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Now following the techniques used at the end of Theorem C, we have

91

THEOREM E. Let fez) = :L;:o a~k be an entire function of order
p(O < p < 00), type T and lower type w, T < 2w(0 < W ~ T < (0), with
nonnegative real coefficients. Then

(34)

(35)

(36)

Remark. If T = w, then as we have observed earlier, Xl = x 2 • Hence,
taking in (34) and (35) T = W, we obtain Theorem 1 of [3], that is,

r ( )l/n __1_
nt.,~ gn - 21/0 •

Proof of Theorem E. From the hypothesis we have

'tIx >0, 'tin;;:': n*.

With n + 1 = np , we have from (5),

'tIx >0,

We know from (16) that there exists an R1(e) > 0 such that

Therefore,

1 1 ( (pw - e)n+l )1/0 xn+l

six) - f(x) > (n + I)! . e2(T+«/0)l",P ,
(37)

n + 1 = np ,

With x P = (n + 1)j(2(pT + e)), which is compatab1e with X > R1(e) if n is
large, we obtain from (37):

I
(pw - e)n+l 11/0 I n + 1 I(n+ll/o

g", > (n + I)!' e-(n+l)/o2(pT + e) .
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Hence, it readily follows that

A. R. REDDY

(
w )1/0lim inf (gn _1)l/n,,-1 ~ - .

1'400 P T2 (38)

Using the same technique that established (I4) from (II), we obtain from (38)

(39)

Now (34) follows from (II) and (39), and (35) follows from 14) and (38).

Some remarks on Theorems C and D. For functions of perfectly regular
growth (p, 'T) we have from Theorems C and D

_1_ -/' I' . f (\ )1/n I' (\ )1/n 1
22+(1/0) """ l~~n /lo. n ~ I1~L~UP /lo. n ~ 2 1 / 0 . (40)

Equation (40) suggests that the limit may exist for a certain class of entire
functions; (40) also suggests that one cannot replace 2 on the right by any
number greater than 2 for any p.

THEOREM F. Let fez) = L::~o ak7k (ao> 0, ak ~ °for all k ~ 1) be an
entire function of order p(o < p < (0), type 'T and lower type w, such that
°< w ~ 'T < 00. Then

1lim sup (,\0 n)l/n ~ -~--,-
n->oo' ew /(2087) ,

if w ~ 2pe'T Iog[4(21 /0 - I)], (41)

if w ~ 2pe'T Iog[4(21/ 0
- 1)]. (42)

Proof For each r > 0, let qn(x; r) E TTn denote the best Chebyshev
approximation to f in [0, r] so that

Ilf - qn('; r)II[o;r] = }~! IIf - an II[o:r] = an(r). (43)
n n

It is known that there exist points °< xl(r) < x2(r) < ... < x n+1(r) < r
such that qn(xJCr); r) = f(xJCr», 1 ~ j ~ n + 1. By expressing qn(x; r) as
a Newton interpolation series, we have

n

+ f[x1(r), ... , x n+1(r)] . IT (x - x;(r»,
j=1
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where f(x1(r), ... , xj+l(r)] is the devided difference of f at the points
x1(r), ... , xi+l(r). It is known that

Since the ak are all ~O, the same holds for the divided differences. So
qn(x; r) is monotonically increasing as a function of x for all x ~ r. Now let

From (43), it is evident that

for each n ~ O.

Pix; r) ~ f(x) ~ f(O) > 0, for all x E [0, r]. (44)

Moreover, from the monotone nature of Pn(x; r) as a function of x for all
x ~ r, we also have that

But

f(x) ~ fer) > 0

for all x ~ r.

for all x ~ r.

Therefore, from the above two inequalities,

I I I I~ 2
f(x) - Pix; r) "" fer)

On the other hand, it follows from (43) that

for all x ~ r. (45)

1
_1 _ 1 I_I Pn(x; r) - f(x) I~ 2Sir)
f(x) Pn(x; r) - f(x) Pix; r) "" j2(0) ,

xE[O,r]. (46)

Now by using again a result ofS. N. Bernstein [1, p. IOJ over the interval
[0, r J, along with the hypothesis that the Taylor coefficients are ~O, we have

That is,

r n+1
00 a (n + 1 + ')' jS () ~ __ " n+1+j ] . r

n r "" 22n+l 1=1 (n + 1)!(j)! •

Now from (4) we have, for sufficiently large n,

(47)

Ipe(-r + e) !In+i+ll!p
an+i+l:( n + j + 1 ' for j = 0, I, 2, 3,....
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By substituting this in (47), we obtain

n+l cD ( + 1 + ')' j8 ( ) :::::: _r_ " an+1+i n } . r
n r "" 22n+1 L. (n + I) !(j)!

:::::: r n+1 cD (pe(r + E) )<n+1+il/p i(n + I + j)!
"" 22n+1 i~ n + I + j r (n + I)!(j)!

I (pe(r+E) )1/Pln+l_I_~ \( pe(r+ E) )L/P li(n+ I +j)!
~!' (n + I) 22n+1 i7:0 I n + I r (n + I)!(j)! .

Now choose

Then

that is

so that,

(
peer + E) )1/P = _1_

r (n + I) 21/p . (48)

X E [0, r). (49)

From the definition oflower type we havef(r) ~ e,J'(w-.J, r ~ r•.
Now substituting in this inequality the value of r from (48), we have

f( ) ~ ( (n + I)(w - E) )
r y- exp 2pe(r + E) ,

From (45) and this inequality,

_2_:::::: 2
fer) "" ex ((n + I)(w - E) ) .

p 2pe(r + E)
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Vx ;? r. (50)
1

_1__ 1 1~_2 ~ 2
f(x) Pix; r) "" f(r) "" ex ((n + 1)(w - E) )

P 2pe(T + E)

Now if we set Pn(x) = Pn(x; r) = Pn(x; r(n)), we have from (49) and (50), E

being arbitrary,

. I 1 1 1

1
/
n l 1 1 I

11l~...:UP f(x) - Pn(x) ~ max I 4(21/p - 1) , eW/2pe7 .

If w ~ T2pe log[4(21/p - 1)], then clearly (41) follows, while if

w > T2pe log[4(21/p - 1)],

(51)

then (42) is valid.

Remark on Theorem F. Theorem F also improves Theorem A. Unlike
Theorem C, this theorem strongly depend on the order p of the function via
(41) and (42).

THEOREM G. Let f(z) = L:~o akzk (ao> 0, ak;? 0, k = 1, 2,...)
be an entire function of order p(O < p < 00), type T and lower type
w(O < w ~ T < 00). Then

lim sup (,\ )l/n ~ 1
n...co O.n "" ew /[pe7(1+21/P)P] (52)

Proof The proof proceeds along the same lines as that of Theorem F,
except that we choose here instead of (48),

(
pe(T+E))l/P= 1
(n + 1) 21 /

p + 1

Then we obtain instead of (51),

(48')

. II 1 1 11

1

/

n

11l~...:UP f(x) - Pn(x) (51')

Here, obviously, 1/22+1/p ~ 1/ew/PM(l+21/P)P for any p(O < p < 00), T and
w(O < w ~ T < 00). Hence (52) follows.

Remarks on Theorem G. This theorem includes Theorem B. Theorems C,
F and G suggest that by restricting the growth of the function, one can get
better upper bounds.
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Note added in proof Since this paper was submitted for publication, much progress
has been made in several directions; the interested reader may refer to Refs. 6-11.
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